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Abstract. Series expansions are presented for the magnetisation, susceptibility, magnetic 
field derivatives of the susceptibility and ‘specific heat’ of the zero-temperature transverse 
king model. Coefficients in these series have been calculated to tenth order in A *  (where A 
is the transverse field) for the linear chain, to eighth order for the square lattice and to 
seventh order for the triangular lattice. These series yield estimates of the low-temperature 
critical exponents e’, @, y’ and A of the two- and three-dimensional Ising models. They 
provide good evidence for the symmetry of exponents above and below the critical point, 
e.g. y’ = y. 

1. Introduction 

There exists a correspondence between the d-dimensional transverse Ising model at 
zero temperature and the (d + 1)-dimensional Ising model (Pfeuty 1970, Suzuki 1976). 
This correspondence is well known for spin-; and has been extended by Oitmaa and 
Coombs (1981) to the spin-1 case. For spin-; the relation between the two models is 
most clearly seen by considering the transfer matrix of the king model in an extremely 
anisotropic limit of the exchange couplings (Kogut 1979). The ground-state energy, EO, 
of the quantum mechanical system is related to the free energy of the (d + 1)-Ising 
system. In addition, the mass gap of the quantum model (the difference in energy 
between the first excited state and the ground state) is related to the inverse correlation 
length of the Ising model. This is an example of a more general correspondence 
between a statistical mechanical system and an appropriate quantum model which is 
discussed in Kogut (1979). 

The spin-; transverse Ising model is described by the Hamiltonian 

I i 

where the c+P are Pauli spin operators and (ij) denotes nearest-neighbour bonds. At 
finite temperature this model has a number of physical applications (Stinchcombe 1972) 
but this work is concerned only with the zero-temperature limit. At T = 0 the ground 
state has two phases: a broken symmetry phase at small A and a disordered phase for 
large A. There is a second-order phase transition between the two regimes at A = A,. i n  
one dimension the ground-state energy and magnetisation are known exactly 
(Pfeuty 1970). The transition occurs at A, = 1. This zero-temperature phase transition 
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has also been studied in one and two dimensions by series methods (Pfeuty and Elliott 
1971, Elliot et a1 1970, Yanase et a1 1976) and the real space renormalisation group 
(Jullien et a1 1978, Penson et a1 1979). 

The inclusion of a parallel magnetic field in (1) facilitates the calculation of the 
magnetisation, M = -dEo/dhjh=o, susceptibility x = d2Eo/dh21h=o and further field 
derivatives. The 'specific heat' is given by -d2Eo/dy2 (where y = A-') as suggested by 
Barber (Hamer and Kogut 1979). Series expansions for these quantities are presented 
for the linear chain and the square and triangular lattices. 

Series for the mass gap are not presented because the method of derivation uses a 
linked cluster expansion which restricts the study to extensive quantities. In one 
dimension the mass gap is known to be simply proportional to (1 - A )  as shown by 
Hamer et a1 (1979). The mass gap series has also been calculated for general d by Pfeuty 
and Elliott (1971) and Sobel'man (1980). 

In the following section the method of calculation is outlined. Section 3 discusses 
the results in one dimension and 94 is concerned with the series for the two-dimensional 
lattices. 

2. Derivation of the series 

Series expansions for the zero-temperature spin-; transverse Ising model may be 
obtained using perturbation theory (Pfeuty and Elliott 1971, Hamer and Kogut 1979). 
In addition high-temperature series for the susceptibility have been calculated which 
can treat both the finite-temperature and zero-temperature transitions, thus investi- 
gating the crossover behaviour (Elliott et a1 1970, Yanase et a1 1976). 

The new feature employed in this work is a linked cluster expansion (Nickel 1980). 
In generating the series expansion for the ground-state energy, Eo, in the ordered 
regime, terms arise from one spin flip, two spin flips, etc. The expression for Eo may be 
rearranged as an expansion of the form 

where the C,,,,,, are constants and E,,,,, is the ground-state energy of m spins in 
configuration am, The perturbation expression for each E ~ , , , , ,  contains at least one 
power of Am; for every site i in the cluster gm,,,,,. Further, for any finite cluster 

If a graph, gp,olp, consists of two disconnected pieces containing q and r spins then 
Hp,rrp = Hq,,, @Hr,,, and Ekmp =E:". +E$".. There is then no contribution to E ~ , , ~  

and only connected graphs need be included in the expressions of (2) and (3). 
The C,,,,,, and C;::; are lattice constants. The form of the perturbation in (1) 

requires that they be the strong embedding constants. They are given by the number of 
ways in which a graph, g,,,,, may be embedded on the lattice under consideration 
subject to the constraint that sites in the cluster can only be nearest neighbours when 
embeddded if they are also neighbours in the free cluster. For convenience the C,,,, 
are defined per site. TQ give an example, the strong embedding constant for a chain of 
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four spins embedded on the square lattice is 14. In terms of graph theory (Domb 1974a) 

where 9 is the lattice. These graphs and lattice constants are also used to determine the 
density expansions for an Ising model in a field (Domb 1974b). Reproduction of those 
series served as a check on the calculation. 

The Hamiltonian matrix for a given cluster has a tridiagonal form if the basis is 
chosen to be the unsymmetrised set of states with zero spin flips, one flip, two flips etc 
from the unperturbed ground state with all spins aligned. For a cluster of m spins it has 
the form 

r 
m 

The Ui are diagonal matrices with entries of the form a + bh. Each entry in Vi is either 0 
or 1. The perturbed ground-state energy is obtained by recursion, for which the U,:' 
are required. At this point only L powers of h are retained. The Vi are stored in a linear 
array with dimension (2" - 1)(L + 1). The array for the V, has dimension m x 2"-'. 
Series are thus generated for the E$ to A Z N  where N is defined in (2). It follows from 
the structure of ( 5 )  that the series are even in A. The series expansion for Eo is then 
obtained using (2) and (3). The coefficients of this series in x = A 2  are themselves 
expansions in h to h '. Series expansions for C, M, x, and d"xyldh"(n S L - 2) are thus 
generated which yield estimates of the low-temperature critical exponents for the king 
model in d + 1. 

In the disordered, large A ,  regime the ground-state energy is even in h, odd in A. A 
linked cluster expansion may be used to generate an expansion for Eo in h - l .  The 
graphs considered in (2) and (3) would then contain m bonds and the constants in those 
expansions would become the weak embedding constants. The form of the Hamil- 
tonian matrix for a cluster in this perturbation scheme is somewhat different from ( 5 )  
and the calculation of Ehai by recursion more complex. 

3. One dimension (1 + 1) 
In one dimension (3) reduces to the simple form 

,??E= 1 ( p - i + l ) E i  
P 

i = l  

and to order x i :  Eo = E6 -Eh-'. The series have been calculated to tenth order in x. To 
this order, the expansions for Eo (and hence C) and M agree with the exact expressions 
of Pfeuty (1970). 

The expansions for x and its first and second derivative with respect to h are given in 
table 1. Ratio analyses of these series are shown in figures 1 and 2. The ratio method 
(for a review, see Gaunt and Guttmann 1974) assumes that the function approximated 
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Table 1. Series expansion coefficients for one dimension. The expansion parameter is 
x = A 2 ,  with A defined in (1). 

Order x -dX/dh d2X/dhZ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

0.125 000 EO 
0.203 125 EO 
0.271 484 EO 
0.334 412 EO 
0.393 572 EO 
0.449 886 EO 
0.503 931 EO 
0.556 104 EO 
0.606 690 EO 
0.655 904 EO 

0.187 500 EO 
0.867 188 EO 
0.224 561 E l  
0.450 101 E l  
0.779 133 E l  
0.122 611 E2 
0.180 447 E2 
0.252 689 E2 
0.340 538 E2 
0.445 146 E2 

0.375 000 EO 
0.428 906 E l  
0.201 211 E2 
0.630 992 E2 
0.156 578 E3 
0.333 135 E3 
0.635 557 E3 
0.111 773 E4 
0.184 545 E4 
0.289 722 E4 

1 . 6 5 1  

L-, 
0 0.1 0 . 2  0.3 0 . 4  0 . 5  

1 I n  

Figure 1. Plot of 1 +g, against l l n  for the series for x in one dimension. 

P - 
6 

l -  
j3.8 

i 
I 

5 . 0  t , , , 

0 0 . 1  0.2 0.3 0 . 4  0.5 
1 In  

Figure 2. Plots of 1 + g, against l / n  for the dxldh and dZX/dhZ series in one dimension, 
represented by closed circles and triangles respectively. 



Series expansions for the transverse Ising model 205 1 

by the power series 
N 

Fs(x)= 1 bnxn 
n=O 

has a power law form 

F ( x )  = A(x - x,)-' 

from which it follows that the ratio of successive coefficients will be 

R, = = (1 +-+ 7-1 O(n-2)). 
bn-1 x c  n 

The sequence 

gn = n (Rnxc- 1) (10) 

then provides estimates to y - 1 if x c  is known. 
The ratio plot for y' shown in figure 1 uses (10) and the value of the critical point, 

xc = A ?  = 1. The extrapolation gives an estimate of y' = 1.748 * 0.002. Similar ratio 
plots for the exponents of dxldh and d2X/dh2 are shown in figure 2. The field 
derivatives of the susceptibility are believed to diverge from below the critical point as 

-- d"X (x -Xc)-''-nA' 
dh" 

where A' is the low-temperature gap exponent (Essam and Hunter 1968). The ratio 
plots in figure 2 yield the estimates: y' +A' = 3.63 * 0.01 ; y' + 2A' = 5.50 * 0.02. The 
arrow marks the intercept expected if the scaling form of equation (1 1) were satisfied 
with A ' =  1.875, y ' =  1.750. 

The method of Pad6 approximants is widely used in the determination of critical 
points and exponents. For a function of the form of F (x )  in (8), the Dlog Pad6 
approximant 

provides an estimate of -.-y/(x-xc) from the series F,(x). P N ( x )  and &(x) are 
polynomials of degree N and M respectively. These approximants may also be biased 
with the known value of xc. The [NIM] Pad6 approximants to (x - x c ) ( l / F )  dF/dx, 
with F = x, dxldh and dZX/dh2, are given in tables 2-4. The convergence is extremely 

Table 2. [ N / M ]  biased Dlog Pad6 approximants to the series for ,y on the linear chain. 

2 3 4 5 6 7 

2 1.7418 1.7436 1.7465 1.7476 1.7483 1.7487 1.7490 
3 1.7436 1.7353 1.7478 1.7493 1.7489 1.7496 
4 1.7463 1.7478 1.7486 1.7490 1.7491 
5 1.7474 1.7492 1.7490 1.7500 
6 1.7482 1.7489 1.7491 
7 1.7486 1.7495 
8 1.7490 
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Table 3. As table 2 for dxldh. An asterisk indicates a defect. 

N\M 1 2 3 4 5 6 7 

2 3.6295 3.6345 3.6252 3.6252 3.6251 3.6251 3.6251 
3 3.6345 3.6313 3.6252 3.6252* 3.6251 3.6251 
4 3.6256 3.6251 3.6251 3.6251 3.6250 
5 3.6251 3.6251 3.6252 3.6251 
6 3.6251 3.6251 3.6251 
7 3.6251 3.6251 
8 3.6251 

Table 4. As table 2 for d2,yldh2. 

N\M 1 2 3 4 5 6 7 

2 5.8466 5.4204 5.5175 5.4955 5.5016 5.4998 5.5000 
3 5.3588 5.4989 5.4995 5.5002 5.5002 5.5000 
4 5.5550 5.4995 5.4964 5.5002 5.5003* 
5 5.4776 5.5003 5.5002 5.5000 
6 5.5097 5.5002 5.5003* 
7 5.4962 5.5000 
8 5.5015 

good, yielding the estimates 

y ' =  1.750*0.001 

y'+A'= 3.6250*0.0001 

y' + 2A1 = 5.5000 * 0.0002 

and hence 

A ' =  1.875*0.001. 

The agreement with the value of 1.87*0.01 found for A, the high-temperature gap 
exponent, by Essam and Hunter (1968), is excellent. These estimates and the exact 
value for p of 0.125 provide good evidence for the scaling relations 

A' = A Y ' = Y  A' = p + y ' .  

4. Two dimensions (2+1) 

It is convenient to calculate the series in two dimensions from the Hamiltonian 

The series obtained for the square lattice are given in table 5. The first four terms of the 
magnetisation series were previously calculated by Pfeuty and Elliott (1971). They are 
somewhat less regular than those obtained in one dimension. In particular the ratios 
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Table 5. Series expansion coefficients for the square lattice. The expansion parameter is 
x = A 2 ,  with A defined in (10). 

Order C M X - dx/d h d2x/dh 

0.300 000 E l  
0.833 333 EO 
0.437 500 EO 
0.942 708 EO 
0.613 644 EO 
0.168 294 E l  
0.939 918 EO 
0.406 439 E l  
- 

0.500 000 EO 
-0.250 000 EO 
-0.173 611 EO 
-0.146 701 EO 
-0.202 286 EO 
-0.225 083 EO 
-0.348 168 EO 
-0.416 851 EO 
-0.719 441 EO 

0.250 000 EO 
0.606 481 EO 
0.108 464 E l  
0.222 461 E l  
0.387 519 E l  
0.746 816 E l  
0.126 702 E2 
0.242 430 E2 

0.375 000 EO 
0.227 546 E l  
0.738 256 E l  
0.223 647 E2 
0.557 043 E2 
0.137 719 E3 
0.303 987 E3 
0.689 220 E3 

0.750 000 EO 
0.950 540 E l  
0.510 040 E2 
0.221 627 E3 
0.755 279 E3 
0.238 096 E4 
0.661 903 E4 
0.179 347 E5 

show considerable fluctuations which can be attributed to the presence of an antifer- 
romagnetic singularity. The analysis of these series is thus based on the method of Pad& 
approximants. 

The estimates for p and xcfound from the [ N / M ]  Dlog Pad6 approximants are given 
in table 6.  The approximants clearly favour a value of 0.578 for xc. Pad& approximants 
to the other series in table 5 do not have such convergent behaviour. There exists an 
independent estimate of xc from the susceptibility series calculated by Yanase et a1 
(1976). Their ratio analysis indicates a value for xc close to 0.579. Figure 3 shows the 
variation with x c  of the estimates of a’, p and y’ obtained from the highest-order biased 
Dlog Pad& approximants. If the Rushbrooke relation between the exponents 

a1+2p + y ’ s 2  (14) 
is used to determine xc ,  then the estimates in figure 3 indicate a value of 0.580 at which 
the equality in (14) is satisfied. The critical point is thus estimated as being 

xc = 0.579 * 0.001. 

Taking the band of estimates of figures 3 and 4 in this more limited region gives the 

Table 6.  [NIM]  Dlog Pad6 approximants to the series for the magnetisation on the square 
lattice. The first entry is the estimate for @, the second the estimate for x,. 

N\,M 1 2 3 4 5 6 

1 0.362 
0.619 

2 0.233 
0.534 

3 0.393 
0.609 

4 0.230 
0.547 

5 0.455 
0.613 

6 0.193 
0.542 

0.299 
0.574 
0.298 
0.573 
0.301 
0.574 
0.311 
0.578 
0.310 
0.578 

0.298 0.301 0.312 0.311 
0.573 0.574 0.578 0.578 
0.299 0.296* 0.311 
0.573 0.572 0.578 
0.296* 0.300* 
0.572 0.574 
0.310 
0.578 
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Figure 3. Highest-order Pad6 approximant Figure 4. As figure 3 from the series for dx/dh and 
exponent estimates from the C, M and x series on 
the square lattice. They are plotted against the value 
of x ,  used to bias the approximant. 

d2x/dh2 on the square lattice. 

following exponent estimates: 

CY' = 0.097 * 0.001 

y'+h'=2.65*0.10 

p = 0.315 * 0.005 y' = 1.25 * 0.02 

y '+  2A' = 4.24 f 0.10. 

The last two estimates are consistent with 

A' = 1.5 * 0.2. 

Series expansions have been calculated for the triangular lattice to seventh order in x 
(see table 7). (The number of graphs required is approximately ninety, which is similar 
to the number required for the square lattice series to eighth order.) These series 
appear to be better behaved; they do not have an antiferromagnetic singularity due to 
the close packed nature of the lattice. They are not as well behaved as those for the 

Table 7. As table 5 for the triangular lattice. 

Order C M X -dx/dh dzX/d h 

0.200 000 E l  
0.148 148 EO 
0.671 605 E-1 
0.290 448 E-1 
0.151 504 E-1 
0.835 498 E-2 
0.522 291 E-2 
- 

0.500 000 EO 
-0.111 111 EO 
-0.251 852 E-1 
-0.107 437 E-1 
-0.507 865 E-2 
-0.263 893 E-.2 
-0.144 522 E-2 
-0.838 931 E-3 

0.740 741 E-1 
0.596 543 E-1 
0.487 608 E-1 
0.373 911 E-1 
0.280 505 E-1 
0.207 222 E-1 
0.153 204 E-1 
- 

0.740 741 E-1 
0.147 305 EO 
0.209 663 EO 
0.244 223 EO 
0.254 847 EO 
0.247 442 EO 
0.230 120 EO 
- 

0.987 654 E-1 
0.400 298 EO 
0.921 627 EO 
0.155 690 E l  
0.219 445 E l  
0.274 286 E l  
0.316 573 E l  
- 
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1 . 2 6 -  

linear chain, though, as is most clearly seen from the series for dx/dh. Hence the 
analysis of these series is also based on the Pad6 approximant method. 

The estimates for p and xc  on the triangular lattice are shown in table 8. Figure 5 
shows a plot of a’, p and y’  obtained from biased Dlog Pad6 approximants and their 
variation with the value of xc chosen. The susceptibility series of Yanase et a1 (1976) for 
the triangular lattice suggests a value for x c  of 1.4195 from ratio analysis and 1.4206 
from a Pad6 analysis. Thus 

xc- 1.420i0.001. 

Equation (14) is satisfied for x c  greater than 1.420. Estimates for the exponents may 
then be read from figure 5 as before. They are 

cy’ = 0.098 * 0.003 p = 0.315 * 0.002 y f  = 1.250k0.012. 
A similar analysis of the series for dx/dh yields 

A ’ + $  =2.70*0.15. 

/ 

Table 8. As table 6 for the triangular lattice. 

N M1 2 3 4 5 

1 0.285 0.300 0.314 0.324 0.312* 
1.377 1.403 1.419 1.426 1.418 

2 0.307 0.311 0.321 0.315* 
1.412 1.416 1.424 1.420 

3 0.310 0.326 0.312* 
1.416 1.390 1.418 

4 0.315 0.311* 
1.420 1.417 

5 0.302 
1.410 

0.319 - 

0.313 

0.31 1 

f 

0.09 y, -- 
1.417 1.418 1.419 1 .420  1.421 

XC 

Figure 5. As figure 3 from the series for C, M and ,y on the triangular lattice. 



2056 L G Marland 

The consistency of these values with the estimates from the series on the square 
lattice is very encouraging. It should be noted though that, as shown for the magnetisa- 
tion series in table 8, almost all the highest-order approximants have defects. 

5. Conclusions 

High-temperature series for the Ising model have yielded quite accurate deter- 
minations of the critical exponents. The low-temperature series, however, are quite 
irregular and do not give exponents to the same accuracy (for a review, see Domb 
1974b). The symmetry of the critical exponents above and below the critical point has 
thus been in question. The results here presented provide,good evidence for such a 
symmetry, in particular 

Y ’ = Y  A’ = A. 

The accurate determination of critical exponents by the renormalisation group method 
(Le Guillou and Zinn-Justin 1977) assumes this symmetry. 

The series presented are also of interest as they may be investigated using the ratio 
method. Ratio plots for the series on the two-dimensional lattices have not been 
presented. They require a change of variable to z = x/(x +a) ,  an Euler transformation, 
where a is some constant. The results from these plots are consistent with the Pad6 
approximant analysis but somewhat less accurate. 

The estimates presented for c y ’  require a further comment. Analysis of series for 
d2Eo/dx2 on the two-dimensional lattices, which should also diverge at the critical point 
with exponent cy’, suggest a value close to 0.2. This may be explained by the presence of 
a background term which is implicitly generated and which considerably affects the 
estimate of such a small exponent. This type of series may be analysed by a generalisa- 
tion of the Pad6 approximant method (Fisher and Au-Yang 1979). Unfortunately a 
sufficient number of coefficients is not presently available. 

The series expansions presented for the derivatives of the susceptibility support the 
conclusions of Essam and Hunter (1968). The two-dimensional Ising gap exponent is 
now known to somewhat better accuracy. The estimate for the three-dimensional Ising 
exponent A’ is lower than the value found for A by Essam and Hunter. Their estimate 
for A’ was on the high side with a similar error to that quoted here. 
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