IOPSClence iopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Series expansions for the zero-temperature transverse Ising model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1981 J. Phys. A: Math. Gen. 14 2047
(http://iopscience.iop.org/0305-4470/14/8/027)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 14:43

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/14/8
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Gen. 14 (1981) 2047-2057. Printed in Great Britain
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Abstract. Series expansions are presented for the magnetisation, susceptibility, magnetic
field derivatives of the susceptibility and ‘specific heat’ of the zero-temperature transverse
Ising model. Coefficients in these series have been calculated to tenth order in A2 (where A
is the transverse field) for the linear chain, to eighth order for the square lattice and to
seventh order for the triangular lattice. These series yield estimates of the low-temperature
critical exponents a’, 8, ¥’ and A’ of the two- and three-dimensional Ising models. They
provide good evidence for the symmetry of exponents above and below the critical point,

eg. vy =17

1. Introduction

There exists a correspondence between the d-dimensional transverse Ising model at
zero temperature and the (d + 1)-dimensional Ising model (Pfeuty 1970, Suzuki 1976).
This correspondence is well known for spin-% and has been extended by Oitmaa and
Coombs (1981) to the spin-1 case. For spin-3 the relation between the two models is
most clearly seen by considering the transfer matrix of the Ising model in an extremely
anisotropic limit of the exchange couplings (Kogut 1979). The ground-state energy, E,
of the quantum mechanical system is related to the free energy of the (d + 1)-Ising
system. In addition, the mass gap of the quantum model (the difference in energy
between the first excited state and the ground state) is related to the inverse correlation
length of the Ising model. This is an example of a more general correspondence
between a statistical mechanical system and an appropriate quantum model which is
discussed in Kogut (1979).
The spin-3 transverse Ising model is described by the Hamiltonian

H=) (1-cio])+h L (1-o))+A Y o} (1)
i i i
where the o are Pauli spin operators and (i) denotes nearest-neighbour bonds. At
finite temperature this model has a number of physical applications (Stinchcombe 1972)
but this work is concerned only with the zero-temperature limit. At T =0 the ground
state has two phases: a broken symmetry phase at small A and a disordered phase for
large A. There is a second-order phase transition between the two regimesat A = A.. 1n
one dimension the ground-state energy and magnetisation are known exactly
(Pfeuty 1970). The transition occurs at A,= 1. This zero-temperature phase transition
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has also been studied in one and two dimensions by series methods (Pfeuty and Elliott
1971, Elliot et al 1970, Yanase et al 1976) and the real space renormalisation group
(Jullien et al 1978, Penson et al 1979).

The inclusion of a parallel magnetic field in (1) facilitates the calculation of the
magnetisation, M = —dEo/dh|,—o, susceptibility x = d*Eo/dh?|,- and further field
derivatives. The ‘specific heat’ is given by —~d*Eo/dy” (where y = A ™") as suggested by
Barber (Hamer and Kogut 1979). Series expansions for these quantities are presented
for the linear chain and the square and triangular lattices.

Series for the mass gap are not presented because the method of derivation uses a
linked cluster expansion which restricts the study to extensive quantities. In one
dimension the mass gap is known to be simply proportional to (1 —A) as shown by
Hamer etal (1979). The mass gap series has also been calculated for general 4 by Pfeuty
and Elliott (1971) and Sobel’man (1980).

In the following section the method of calculation is outlined. Section 3 discusses
the results in one dimension and §4 is concerned with the series for the two-dimensional
lattices.

2. Derivation of the series

Series expansions for the zero-temperature spin-3 transverse Ising model may be
obtained using perturbation theory (Pfeuty and Elliott 1971, Hamer and Kogut 1979).
In addition high-temperature series for the susceptibility have been calculated which
can treat both the finite-temperature and zero-temperature transitions, thus investi-
gating the crossover behaviour (Elliott et al 1970, Yanase et al 1976).

The new feature employed in this work is a linked cluster expansion (Nickel 1980).
In generating the series expansion for the ground-state energy, Eo, in the ordered
regime, terms arise from one spin flip, two spin flips, etc. The expression for E; may be
rearranged as an expansion of the form

N
E0= Z Z Cm,amsm,am (2)

m=1 a,,

where the C,., are constants and ¢,,,,, is the ground-state energy of m spins in
configuration a,,. The perturbation expression for each ,,,, contains at least one
power of Ao for every site { in the cluster g,,.... Further, for any finite cluster

Eg" =Y Y Cioit iy )

=1 a

If a graph, g,., consists of two disconnected pieces containing g and r spins then
H,o,=Hgo, ®H,. and E§% = E{*+ Eg™. There is then no contribution to £,
and only connected graphs need be included in the expressions of (2) and (3).

The C,.q, and C};Z; are lattice constants. The form of the perturbation in (1)
requires that they be the strong embedding constants. They are given by the number of
ways in which a graph, g,..,, may be embedded on the lattice under consideration
subject to the constraint that sites in the cluster can only be nearest neighbours when
embeddded if they are also neighbours in the free cluster. For convenience the C . ,,,
are defined per site. To give an example, the strong embedding constant for a chain of
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four spins embedded on the square lattice is 14. In terms of graph theory (Domb 1974a)

Crman, =[gman; ] @
Ciat=[giays Biva)

where £ is the lattice. These graphs and lattice constants are also used to determine the
density expansions for an Ising model in a field (Domb 1974b). Reproduction of those
series served as a check on the calculation.

The Hamiltonian matrix for a given cluster has a tridiagonal form if the basis is
chosen to be the unsymmetrised set of states with zero spin flips, one flip, two flips etc
from the unperturbed ground state with all spins aligned. For a cluster of m spins it has
the form

0 AV,
AVE Ul AV,

AV: U, (5)

Un

The U; are diagonal matrices with entries of the form a + bh. Eachentryin Vs either 0
or 1. The perturbed ground-state energy is obtained by recursion, for which the U ,71
arerequired. At thispointonly L powersof 4 are retained. The U, are storedin alinear
array with dimension (2™ —1)(L +1). The array for the V; has dimension m X 2m
Series are thus generated for the E§™ to A 2N where N is defined in (2). It follows from
the structure of (5) that the series are even in A. The series expansion for Ej is then
obtained using (2) and (3). The coefficients of this series in x =A> are themselves
expansions in k to A", Series expansions for C, M, x, and d"y/dh"(n <L —2) are thus
generated which yield estimates of the low-temperature critical exponents for the Ising
model in d + 1.

In the disordered, large A, regime the ground-state energy is even in 4, odd in A. A
linked cluster expansion may be used to generate an expansion for Eo in A ™', The
graphs considered in (2) and (3) would then contain m bonds and the constants in those
expansions would become the weak embedding constants. The form of the Hamil-
tonian matrix for a cluster in this perturbation scheme is somewhat different from (5)
and the calculation of E§* by recursion more complex.

3. One dimension (1+1)

In one dimension (3) reduces to the simple form
14
Ef=Y (p—i+1l)g (6)
i=1

andtoorderx’: Ec=E) - E I=1 The series have been calculated to tenth order in x. To
this order, the expansions for E, {and hence C) and M agree with the exact expressions
of Pfeuty (1970).

The expansions for y and its first and second derivative with respect to & are given in
table 1. Ratio analyses of these series are shown in figures 1 and 2. The ratio method
(for a review, see Gaunt and Guttmann 1974) assumes that the function approximated
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Table 1. Series expansion coefficients for one dimension. The expansion parameter is
x =A% with A defined in (1),

Order  x —dyx/dh d?y/dh?

0 0.125000E0 0.187500E0  0.375 000 EO
1 0.203125E0 0.867 188 E0  0.428 906 E1
2 0.271484 E0  0.224561E1  0.201211E2
3 0.334412E0 0.450101E1  0.630992 E2
4 0.393572E0 0.779133E1 0.156 578 E3
5 0.449886E0 0.122611E2  0.333135E3
6 0.503931E0 0.180447E2  0.635557 E3
7 0.556 104 E0  0.252689E2 0.111773 E4
8 0.606 690 E0  0.340538E2  0.184 545 E4
9 0.655904 E0  0.445146 E2  0.289 722 E4

! 1

0 01 0.2 0.3 04 05
1/n

Figure 1. Plot of 1+ g, against 1/n for the series for y in one dimension.

8.0t
lu2
R 160 ¢
3 |5
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136
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1/n

Figure 2. Plots of 1+ g, against 1/n for the dy/dh and dz,\//dh2 series in one dimension,
represented by closed circles and triangles respectively.
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by the power series

N
Fi(x)=) bx" 7
n=0
has a power law form
Fx)=A(x—x)7" (8)
from which it follows that the ratio of successive coefficients will be
\ 1 -1 _
Ry=p = (14224007, ©)
b.-1 x. n

The sequence
8n =n(Rnxc—1) (10)

then provides estimates to y — 1 if x. is known.
The ratio plot for vy’ shown in figure 1 uses (10) and the value of the critical point,
Xo = A? =1. The extrapolation gives an estimate of y'=1.748+0.002. Similar ratio
plots for the exponents of dy/dh and d°y/dh® are shown in figure 2. The field
derivatives of the susceptibility are believed to diverge from below the critical point as
d"y

dhn~(x—xc)'“’""” (11)

where A’ is the low-temperature gap exponent (Essam and Hunter 1968). The ratio
plots in figure 2 yield the estimates: y'+A'=3.63+0.01; v +2A’'=5.50+0.02. The
arrow marks the intercept expected if the scaling form of equation (11) were satisfied
with A'=1.875, v' =1.750.

The method of Padé approximants is widely used in the determination of critical
points and exponents. For a function of the form of F(x) in (8), the Dlog Padé
approximant

lﬂ_ Py(x)
F.dx Qu(x)

provides an estimate of —v/(x —x.) from the series Fi(x). Pn(x) and Qu(x) are
polynomials of degree N and M respectively. These approximants may also be biased
with the known value of x.. The [N/M] Padé approximants to (x —x.)(1/F) dF/dx,
with F = x, dx/dh and d*y/dh?, are given in tables 2-4. The convergence is extremely

=[N/M] (12)

Table 2. [N/M] biased Dlog Padé approximants to the series for x on the linear chain.

N\M 1 2 3 4 5 6 7

1.7418 17436 17465 17476 1.7483 1.7487 1.7490
1.7436 1.7353 1.7478 1.7493 1.7489 1.7496

1.7463 17478 17486 1.7490 1.7491

1.7474 1.7492 1.7490 1.7500

1.7482 1.7489 1.7491

1.7486  1.7495

1.7490

00~ A WN
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Table 3. As table 2 for dy/dh. An asterisk indicates a defect.

N\Ml 2 3 4 5 6 7

2 3.6295 3.6345 3.6252 3.6252 3.6251 3.6251 3.6251
3 3.6345 3.6313 3.6252 3.6252% 3.6251 3.6251

4 3.6256 3.6251 3.6251 3.6251 3.6250

5 3.6251 3.6251 3.6252 3.6251

6 3.6251 3.6251 3.6251

7 3.6251 3.6251

8 3.6251

Table 4. As table 2 for d>y/dh>.

I\XMl 2 3 4 5 6 7

2 5.8466 5.4204 5.5175 5.4955 5.5016 5.4998  5.5000
3 53588 5.4989 5.4995 55002 5.5002 5.5000

4 5.5550 5.4995 54964 5.5002  5.5003*

5 5.4776 5.5003 5.5002  5.5000

6 5.5097 5.5002  5.5003*

7 5.4962  5.5000

8 5.5015

good, yielding the estimates
v =1.750+0.001
v +A'=3.6250+0.0001
v'+2A'=5.5000+0.0002
and hence
A'=1.875+£0.001.

The agreement with the value of 1.87+0.01 found for A, the high-temperature gap
exponent, by Essam and Hunter (1968), is excellent. These estimates and the exact
value for 8 of 0.125 provide good evidence for the scaling relations

A'=A v =y A=8+7y.

4. Two dimensions (2+1)

It is convenient to calculate the series in two dimensions from the Hamiltonian

S Awioh 25 0-en A Not

H =
4.4

(13)
The series obtained for the square lattice are given in table 5. The first four terms of the
magnetisation series were previously calculated by Pfeuty and Elliott (1971). They are
somewhat less regular than those obtained in one dimension. In particular the ratios
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Table S, Series expansion coefficients for the square lattice. The expansion parameter is
x =A%, with A defined in (10).

Order Cc M X —dy/dh d*x/dh?

0 0.300 000 E1 0.500 000 E0  0.250 000 E0 0.375 000 EO 0.750 000 EO
1 0.833 333 EO —-0.250 000 E0  0.606 481 E0 0.227 546 E1 0.950 540 E1
2 0.437 500 EO —-0.173611E0  0.108 464 E1 0.738 256 E1 0.510 040 E2
3 0.942 708 E0 —-0.146 701 E0  0.222461E1 0.223 647 E2 0.221 627 E3
4 0.613 644 EQ ~0.202286 E0  0.387 519 El 0.557 043 E2 0.755 279 E3
5 0.168 294 E1 -0.225083E0 0.746816 E1 0.137 719 E3 0.238 096 E4
6 0.939 918 E0 -0.348 168 EO  0.126 702 E2 0.303 987 E3 0.661 903 E4
7 0.406 439 E1 -0.416 851 E0  0.242430E2 0.689 220 E3 0.179 347 ES
8 — —0.719441E0 — — —

show considerable fluctuations which can be attributed to the presence of an antifer-
romagnetic singularity. The analysis of these series is thus based on the method ot Padé
approximants.

The estimates for 8 and x.found from the [ N/M] Dlog Padé approximants are given
in table 6. The approximants clearly favour a value of 0.578 for x.. Padé approximants
to the other series in table 5 do not have such convergent behaviour. There exists an
independent estimate of x. from the susceptibility series calculated by Yanase et al
(1976). Their ratio analysis indicates a value for x. close to 0.579. Figure 3 shows the
variation with x. of the estimates of o', 8 and y' obtained from the highest-order biased
Dlog Padé approximants. If the Rushbrooke relation between the exponents

@' +2B+y' =2 (14)

is used to determine x., then the estimates in figure 3 indicate a value of 0.580 at which
the equality in (14) is satisfied. The critical point is thus estimated as being

x.=0.579x0.001.

Taking the band of estimates of figures 3 and 4 in this more limited region gives the

Table 6. [N/M] Dlog Padé approximants to the series for the magnetisation on the square
lattice. The first entry is the estimate for B, the second the estimate for x..

N\\I\/I 1 2 3 4 5 6
1 0.362 0.299 0.298 0.301 0.312 0.311
0.619 0.574 0.573 0.574 0.578 0.578
2 0.233 0.298 0.299 0.296* 0.311
0.534 0.573 0.573 0.572 0.578
3 0.393 0.301 0.296*  0.300*
0.609 0.574 0.572 0.574
4 0.230 0.311 0.310
0.547 0.578 0.578
5 0.455 0.310
0.613 0.578
6 0.193
0.542
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Figure 3. Highest-order Padé approximant Figure 4. As figure 3 from the series for dy/dA and

exponent estimates from the C, M and y series on  d°x/dh? on the square lattice.

the square lattice. They are plotted against the value
of x. used to bias the approximant.

following exponent estimates:
a’'=0.097x0.001
v +A'=2.65+£0.10

B =0.315+0.005
v'+2A'=4.24+0.10.

v'=1.25£0.02

The last two estimates are consistent with
A'=15+0.2.

Series expansions have been calculated for the triangular lattice to seventh order in x
(see table 7). (The number of graphs required is approximately ninety, which is similar
to the number required for the square lattice series to eighth order.) These series
appear to be better behaved; they do not have an antiferromagnetic singularity due to
the close packed nature of the lattice. They are not as well behaved as those for the

Table 7. As table 5 for the triangular lattice.

Order c M X ~dy/dh d*x/dn?

0 0.200 000 E1 0.500000E0 0.740741E-1  0.740741E-1  0.987 654 E-1
1 0.148 148 EQ —0.111111E0 0.596 543E-1  0.147 305 E0 0.400 298 EO

2 0.671605E-1 —0.251852E-1 0487608E-1  0.209 663 E0O 0.921 627 EO

3 0.290 448 E-1  —0.107437E-1 0.373911E-1  0.244 223 E0 0.155 690 E1

4 0.151504 E-1  —0.507865E-2 0.280505E-1  0.254 847 E0 0.219 445 E1

5 0.835498 E-2  -0.263893E-2 0.207222E-1  0.247 442 E0 0.274 286 E1

6 0.522291E-2  —0.144522E-2 0.153204E-1  0.230 120 E0 0.316 573 E1

7 — -0.838931E-3 — — —
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linear chain, though, as is most clearly seen from the series for dy/dh. Hence the
analysis of these series is also based on the Padé approximant method.

The estimates for 8 and x. on the triangular lattice are shown in table 8. Figure 5
shows a plot of a’, 8 and y' obtained from biased Dlog Padé approximants and their
variation with the value of x. chosen. The susceptibility series of Yanase eral (1976) for
the triangular lattice suggests a value for x, of 1.4195 from ratio analysis and 1.4206
from a Padé analysis. Thus

x.=1.420+0.001.

Equation (14) is satisfied for x. greater than 1.420. Estimates for the exponents may’
then be read from figure 5 as before. They are

a'=0.098 +0.003 B =0.315+0.002 v'=1.250+0.012.
A similar analysis of the series for dy/dh yields
A'+v'=270+0.15.

Table 8. As table 6 for the triangular lattice.

N\M1 2 3 4 5

1 0.285 0.300 0.314 0.324 0.312*
1.377 1.403 1.419 1.426 1.418
2 0.307 0.311 0.321 0.315*
1.412 1.416 1.424 1.420
3 0.310 0.326 0.312*
1.416 1.390 1.418
4 0.315 0.311%

1.420 1.417
5 0.302
1.410
1.26}
/
s
‘/
126k 233
12314
I 52
0317} St
0.315} ’
B L
0.313}
0.3m}
0.1F I
7Y =
a! 33
oo9p
472

T4 1418 1419 1620 1420
Xe

Figure 5. As figure 3 from the series for C, M and x on the triangular lattice.
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The consistency of these values with the estimates from the series on the square
lattice is very encouraging. It should be noted though that, as shown for the magnetisa-
tion series in table 8, almost all the highest-order approximants have defects.

5. Conclusions

High-temperature series for the Ising model have yielded quite accurate deter-
minations of the critical exponents. The low-temperature series, however, are quite
irregular and do not give exponents to the same accuracy (for a review, see Domb
1974b). The symmetry of the critical exponents above and below the critical point has
thus been in question. The results here presented provide good evidence for such a
symmetry, in particular

v =y A=A

The accurate determination of critical exponents by the renormalisation group method
(Le Guillou and Zinn-Justin 1977) assumes this symmetry.

The series presented are also of interest as they may be investigated using the ratio
method. Ratio plots for the series on the two-dimensional lattices have not been
presented. They require a change of variable to z = x/(x + a), an Euler transformation,
where a is some constant. The results from these plots are consistent with the Padé
approximant analysis but somewhat less accurate.

The estimates presented for o' require a further comment. Analysis of series for
d*E o/ dx? on the two-dimensional lattices, which should also diverge at the critical point
with exponent a', suggest a value close to 0.2. This may be explained by the presence of
a background term which is implicitly generated and which considerably affects the
estimate of such a small exponent. This type of series may be analysed by a generalisa-
tion of the Padé approximant method (Fisher and Au-Yang 1979). Unfortunately a
sufficient number of coefficients is not presently available.

The series expansions presented for the derivatives of the susceptibility support the
conclusions of Essam and Hunter (1968). The two-dimensional Ising gap exponent is
now known to somewhat better accuracy. The estimate for the three-dimensional Ising
exponent A’ is lower than the value found for A by Essam and Hunter. Their estimate
for A’ was on the high side with a similar error to that quoted here.
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